3.20 \(\int \frac{x^2 \sin (c+d x)}{a+b x} \, dx\)

Optimal. Leaf size=99 \[ \frac{a^2 \sin \left (c-\frac{a d}{b}\right ) \text{CosIntegral}\left (\frac{a d}{b}+d x\right )}{b^3}+\frac{a^2 \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (x d+\frac{a d}{b}\right )}{b^3}+\frac{a \cos (c+d x)}{b^2 d}+\frac{\sin (c+d x)}{b d^2}-\frac{x \cos (c+d x)}{b d} \]

[Out]

(a*Cos[c + d*x])/(b^2*d) - (x*Cos[c + d*x])/(b*d) + (a^2*CosIntegral[(a*d)/b + d*x]*Sin[c - (a*d)/b])/b^3 + Si
n[c + d*x]/(b*d^2) + (a^2*Cos[c - (a*d)/b]*SinIntegral[(a*d)/b + d*x])/b^3

________________________________________________________________________________________

Rubi [A]  time = 0.262161, antiderivative size = 99, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.412, Rules used = {6742, 2638, 3296, 2637, 3303, 3299, 3302} \[ \frac{a^2 \sin \left (c-\frac{a d}{b}\right ) \text{CosIntegral}\left (\frac{a d}{b}+d x\right )}{b^3}+\frac{a^2 \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (x d+\frac{a d}{b}\right )}{b^3}+\frac{a \cos (c+d x)}{b^2 d}+\frac{\sin (c+d x)}{b d^2}-\frac{x \cos (c+d x)}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*Sin[c + d*x])/(a + b*x),x]

[Out]

(a*Cos[c + d*x])/(b^2*d) - (x*Cos[c + d*x])/(b*d) + (a^2*CosIntegral[(a*d)/b + d*x]*Sin[c - (a*d)/b])/b^3 + Si
n[c + d*x]/(b*d^2) + (a^2*Cos[c - (a*d)/b]*SinIntegral[(a*d)/b + d*x])/b^3

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{x^2 \sin (c+d x)}{a+b x} \, dx &=\int \left (-\frac{a \sin (c+d x)}{b^2}+\frac{x \sin (c+d x)}{b}+\frac{a^2 \sin (c+d x)}{b^2 (a+b x)}\right ) \, dx\\ &=-\frac{a \int \sin (c+d x) \, dx}{b^2}+\frac{a^2 \int \frac{\sin (c+d x)}{a+b x} \, dx}{b^2}+\frac{\int x \sin (c+d x) \, dx}{b}\\ &=\frac{a \cos (c+d x)}{b^2 d}-\frac{x \cos (c+d x)}{b d}+\frac{\int \cos (c+d x) \, dx}{b d}+\frac{\left (a^2 \cos \left (c-\frac{a d}{b}\right )\right ) \int \frac{\sin \left (\frac{a d}{b}+d x\right )}{a+b x} \, dx}{b^2}+\frac{\left (a^2 \sin \left (c-\frac{a d}{b}\right )\right ) \int \frac{\cos \left (\frac{a d}{b}+d x\right )}{a+b x} \, dx}{b^2}\\ &=\frac{a \cos (c+d x)}{b^2 d}-\frac{x \cos (c+d x)}{b d}+\frac{a^2 \text{Ci}\left (\frac{a d}{b}+d x\right ) \sin \left (c-\frac{a d}{b}\right )}{b^3}+\frac{\sin (c+d x)}{b d^2}+\frac{a^2 \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (\frac{a d}{b}+d x\right )}{b^3}\\ \end{align*}

Mathematica [A]  time = 0.321318, size = 87, normalized size = 0.88 \[ \frac{a^2 d^2 \sin \left (c-\frac{a d}{b}\right ) \text{CosIntegral}\left (d \left (\frac{a}{b}+x\right )\right )+a^2 d^2 \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (d \left (\frac{a}{b}+x\right )\right )+b (d (a-b x) \cos (c+d x)+b \sin (c+d x))}{b^3 d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sin[c + d*x])/(a + b*x),x]

[Out]

(a^2*d^2*CosIntegral[d*(a/b + x)]*Sin[c - (a*d)/b] + b*(d*(a - b*x)*Cos[c + d*x] + b*Sin[c + d*x]) + a^2*d^2*C
os[c - (a*d)/b]*SinIntegral[d*(a/b + x)])/(b^3*d^2)

________________________________________________________________________________________

Maple [B]  time = 0.007, size = 315, normalized size = 3.2 \begin{align*}{\frac{1}{{d}^{3}} \left ({\frac{ \left ( -da+cb+b \right ) d \left ( \sin \left ( dx+c \right ) - \left ( dx+c \right ) \cos \left ( dx+c \right ) \right ) }{{b}^{2}}}+{\frac{ \left ({a}^{2}{d}^{2}-2\,abcd+{b}^{2}{c}^{2} \right ) d}{{b}^{2}} \left ({\frac{1}{b}{\it Si} \left ( dx+c+{\frac{da-cb}{b}} \right ) \cos \left ({\frac{da-cb}{b}} \right ) }-{\frac{1}{b}{\it Ci} \left ( dx+c+{\frac{da-cb}{b}} \right ) \sin \left ({\frac{da-cb}{b}} \right ) } \right ) }+2\,{\frac{dc\cos \left ( dx+c \right ) }{b}}+2\,{\frac{ \left ( da-cb \right ) dc}{b} \left ({\frac{1}{b}{\it Si} \left ( dx+c+{\frac{da-cb}{b}} \right ) \cos \left ({\frac{da-cb}{b}} \right ) }-{\frac{1}{b}{\it Ci} \left ( dx+c+{\frac{da-cb}{b}} \right ) \sin \left ({\frac{da-cb}{b}} \right ) } \right ) }+d{c}^{2} \left ({\frac{1}{b}{\it Si} \left ( dx+c+{\frac{da-cb}{b}} \right ) \cos \left ({\frac{da-cb}{b}} \right ) }-{\frac{1}{b}{\it Ci} \left ( dx+c+{\frac{da-cb}{b}} \right ) \sin \left ({\frac{da-cb}{b}} \right ) } \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*sin(d*x+c)/(b*x+a),x)

[Out]

1/d^3*((-a*d+b*c+b)*d/b^2*(sin(d*x+c)-(d*x+c)*cos(d*x+c))+(a^2*d^2-2*a*b*c*d+b^2*c^2)*d/b^2*(Si(d*x+c+(a*d-b*c
)/b)*cos((a*d-b*c)/b)/b-Ci(d*x+c+(a*d-b*c)/b)*sin((a*d-b*c)/b)/b)+2*d*c/b*cos(d*x+c)+2*(a*d-b*c)*d*c/b*(Si(d*x
+c+(a*d-b*c)/b)*cos((a*d-b*c)/b)/b-Ci(d*x+c+(a*d-b*c)/b)*sin((a*d-b*c)/b)/b)+d*c^2*(Si(d*x+c+(a*d-b*c)/b)*cos(
(a*d-b*c)/b)/b-Ci(d*x+c+(a*d-b*c)/b)*sin((a*d-b*c)/b)/b))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*sin(d*x+c)/(b*x+a),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 1.70749, size = 319, normalized size = 3.22 \begin{align*} \frac{2 \, a^{2} d^{2} \cos \left (-\frac{b c - a d}{b}\right ) \operatorname{Si}\left (\frac{b d x + a d}{b}\right ) + 2 \, b^{2} \sin \left (d x + c\right ) - 2 \,{\left (b^{2} d x - a b d\right )} \cos \left (d x + c\right ) -{\left (a^{2} d^{2} \operatorname{Ci}\left (\frac{b d x + a d}{b}\right ) + a^{2} d^{2} \operatorname{Ci}\left (-\frac{b d x + a d}{b}\right )\right )} \sin \left (-\frac{b c - a d}{b}\right )}{2 \, b^{3} d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*sin(d*x+c)/(b*x+a),x, algorithm="fricas")

[Out]

1/2*(2*a^2*d^2*cos(-(b*c - a*d)/b)*sin_integral((b*d*x + a*d)/b) + 2*b^2*sin(d*x + c) - 2*(b^2*d*x - a*b*d)*co
s(d*x + c) - (a^2*d^2*cos_integral((b*d*x + a*d)/b) + a^2*d^2*cos_integral(-(b*d*x + a*d)/b))*sin(-(b*c - a*d)
/b))/(b^3*d^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2} \sin{\left (c + d x \right )}}{a + b x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*sin(d*x+c)/(b*x+a),x)

[Out]

Integral(x**2*sin(c + d*x)/(a + b*x), x)

________________________________________________________________________________________

Giac [C]  time = 1.16545, size = 911, normalized size = 9.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*sin(d*x+c)/(b*x+a),x, algorithm="giac")

[Out]

1/2*(a^2*imag_part(cos_integral(d*x + a*d/b))*tan(1/2*c)^2*tan(1/2*a*d/b)^2 - a^2*imag_part(cos_integral(-d*x
- a*d/b))*tan(1/2*c)^2*tan(1/2*a*d/b)^2 + 2*a^2*sin_integral((b*d*x + a*d)/b)*tan(1/2*c)^2*tan(1/2*a*d/b)^2 +
2*a^2*real_part(cos_integral(d*x + a*d/b))*tan(1/2*c)^2*tan(1/2*a*d/b) + 2*a^2*real_part(cos_integral(-d*x - a
*d/b))*tan(1/2*c)^2*tan(1/2*a*d/b) - 2*a^2*real_part(cos_integral(d*x + a*d/b))*tan(1/2*c)*tan(1/2*a*d/b)^2 -
2*a^2*real_part(cos_integral(-d*x - a*d/b))*tan(1/2*c)*tan(1/2*a*d/b)^2 - a^2*imag_part(cos_integral(d*x + a*d
/b))*tan(1/2*c)^2 + a^2*imag_part(cos_integral(-d*x - a*d/b))*tan(1/2*c)^2 - 2*a^2*sin_integral((b*d*x + a*d)/
b)*tan(1/2*c)^2 + 4*a^2*imag_part(cos_integral(d*x + a*d/b))*tan(1/2*c)*tan(1/2*a*d/b) - 4*a^2*imag_part(cos_i
ntegral(-d*x - a*d/b))*tan(1/2*c)*tan(1/2*a*d/b) + 8*a^2*sin_integral((b*d*x + a*d)/b)*tan(1/2*c)*tan(1/2*a*d/
b) - a^2*imag_part(cos_integral(d*x + a*d/b))*tan(1/2*a*d/b)^2 + a^2*imag_part(cos_integral(-d*x - a*d/b))*tan
(1/2*a*d/b)^2 - 2*a^2*sin_integral((b*d*x + a*d)/b)*tan(1/2*a*d/b)^2 + 2*a^2*real_part(cos_integral(d*x + a*d/
b))*tan(1/2*c) + 2*a^2*real_part(cos_integral(-d*x - a*d/b))*tan(1/2*c) - 2*a^2*real_part(cos_integral(d*x + a
*d/b))*tan(1/2*a*d/b) - 2*a^2*real_part(cos_integral(-d*x - a*d/b))*tan(1/2*a*d/b) + a^2*imag_part(cos_integra
l(d*x + a*d/b)) - a^2*imag_part(cos_integral(-d*x - a*d/b)) + 2*a^2*sin_integral((b*d*x + a*d)/b))/(b^3*tan(1/
2*c)^2*tan(1/2*a*d/b)^2 + b^3*tan(1/2*c)^2 + b^3*tan(1/2*a*d/b)^2 + b^3)